The maturation state of virus particles can learn more influence the neutralizing and enhancing capacity of antibodies direct against DENV surface proteins [24, 27, 63]. We detected the specific infectivity of the LoVo-released virus particles and found that the infectious properties of imDENV2 was 10,000-fold lower compared to that of C6/36-cultured standard virus preparations. This agrees with previous results [27, 42] and proves that immature virus is virtually
non-infectious. Antibodies induced by DENV infection may have dual roles: obstruct infection through neutralization activity or enhance viral infection via ADE activity. Consistent with prior studies [24–27, 31, 41, 42], the mAb 4D10 and antibody against
epitope peptide PL10 described in the present study showed broad cross-reactivity and poor neutralizing activity with the four standard DENV serotypes and imDENV GS-1101 chemical structure but significantly enhanced the infectious properties. These results suggested 4D10 and anti-PL10 sera were infection-enhancing antibodies and PL10 was infection-enhancing epitope. We found mAb 4D10 and antibody against PL10 showed different neutralizing against different virus strains, suggesting the existence of structural differences in the epitope region. The mechanism of virus neutralization and ADE in the presence of antibody against prM is still elusive. Consistent with these results, during protection assay
in vivo, our data clearly suggested the epitope peptide PL10 indeed elicit enhancing antibodies and promote DENV replication. The partial neutralization of antibodies against prM to standard dengue viruses implies that some infectious particles within the virus preparation are partially mature (containing a mixture of prM and M) and also indicates that prM antibodies have the capacity to block the infectivity of partially mature particles. Meanwhile, partial cleavage of prM from the viral surface reduces available antigens for neutralization activity. The cross-reactive among four DENV serotypes, together with partial cleavage of prM, makes dengue viruses susceptible to ADE by antibody against prM [24, 56]. It was recently shown that anti-prM Reverse transcriptase antibodies could render essentially non-infectious imDENV particles highly infectious. The prM antibodies bind to the virion surface prM antigens and facilitate efficient binding and cell entry of virus-antibody complexes into Fc receptor-bearing cells following which the endosomal furin clears prM into M and renders immature particles infectious [24, 27]. Taken together, our results support the notion that antibodies against prM can enhance infectivity of prM-containing immature and partially mature DENV particles due to an Y-27632 cost interaction with Fc receptor expressed on immune cells.