Photoperiod was 12 h with 350 μmol m−2 s−1 PPFD and temperature w

Photoperiod was 12 h with 350 μmol m−2 s−1 PPFD and temperature was cycled 23/20 °C (light/dark). Instantaneous whole-canopy gas exchange rate was measured using a LI-6400 (Li-Cor Inc., Lincoln, NE, USA) with a custom-made whole-shoot Arabidopsis cuvette (Fig. 1). Cuvette PPFD was maintained at 350 μmol m−2 s−1

PPFD, CO2 was maintained at 400 μmol mol−1, and temperature and relative humidity were set to growth chamber conditions. Each block was measured on a different day, 28–31 days after sowing. {Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|buy Anti-diabetic Compound Library|Anti-diabetic Compound Library ic50|Anti-diabetic Compound Library price|Anti-diabetic Compound Library cost|Anti-diabetic Compound Library solubility dmso|Anti-diabetic Compound Library purchase|Anti-diabetic Compound Library manufacturer|Anti-diabetic Compound Library research buy|Anti-diabetic Compound Library order|Anti-diabetic Compound Library mouse|Anti-diabetic Compound Library chemical structure|Anti-diabetic Compound Library mw|Anti-diabetic Compound Library molecular weight|Anti-diabetic Compound Library datasheet|Anti-diabetic Compound Library supplier|Anti-diabetic Compound Library in vitro|Anti-diabetic Compound Library cell line|Anti-diabetic Compound Library concentration|Anti-diabetic Compound Library nmr|Anti-diabetic Compound Library in vivo|Anti-diabetic Compound Library clinical trial|Anti-diabetic Compound Library cell assay|Anti-diabetic Compound Library screening|Anti-diabetic Compound Library high throughput|buy Antidiabetic Compound Library|Antidiabetic Compound Library ic50|Antidiabetic Compound Library price|Antidiabetic Compound Library cost|Antidiabetic Compound Library solubility dmso|Antidiabetic Compound Library purchase|Antidiabetic Compound Library manufacturer|Antidiabetic Compound Library research buy|Antidiabetic Compound Library order|Antidiabetic Compound Library chemical structure|Antidiabetic Compound Library datasheet|Antidiabetic Compound Library supplier|Antidiabetic Compound Library in vitro|Antidiabetic Compound Library cell line|Antidiabetic Compound Library concentration|Antidiabetic Compound Library clinical trial|Antidiabetic Compound Library cell assay|Antidiabetic Compound Library screening|Antidiabetic Compound Library high throughput|Anti-diabetic Compound high throughput screening| Following measurements for each plant, leaf area was determined from digital photographs of the rosette using Scion Image (Scion Corporation, Frederick, MD, USA). Fig. 1 Cuvette used for whole-plant gas exchange measurements. The cuvette is mounted on the LI-6400 IRGA and cuvette control system (gold-plated panel, fan and aluminum box, upper photograph). This system allows accurate, rapid measurement of CO2 (A) and H2O (E) exchange of whole shoots of Arabidopsis plants. The whole-plant cuvette incorporates a leaf temperature thermocouple that interfaces directly with the LI-6400. Intrinsic WUE (A/g s), stomatal conductance (g s), internal CO2 concentration (C i), and other variables can be calculated from

these measurements. All interior surfaces are Teflon coated or Ni-plated, the cuvette has extremely BIX 1294 low leak rates when operated in lab conditions with high external CO2, and the circular design provides excellent mixing using the LI-6400 fans. Plants can be rapidly changed using multiple this website inserts (lower photo) A:C i responses were measured for three accessions (Tsu-1, SQ-8, and Kas-1) which differed in A and δ13C. Cuvette conditions were the same as above, Bay 11-7085 but light was increased to

1,000 μmol m−2 s−1 PPFD. Photosynthetic carbon dioxide response curves were measured on four rosettes of each accession. The number of replications of A:C i measurements were limited by chamber environment equilibration time at each CO2 set point. The least squares iterative curve-fitting procedure (Sharkey et al. 2007) model was used to fit Farquhar et al.’s (1980) biochemical model of photosynthesis and obtain maximal carboxylation rate (V cmax) and maximal photosynthetic electron transport rate (Jmax). Leaf water content (Experiment 3) 39 natural accessions from the native range of Arabidopsis previously used in Mckay et al. (2003) were measured for LWC and leaf δ13C. Four replicates of each ecotype were grown in a greenhouse at UC Davis in a randomized block design. Seeds were sown in 250-mL pots in peat-based potting mix with slow-release fertilizer and vernalized at 4 °C for 5 days. Day length was extended to 16 h using supplemental lighting at 350 μmol m−2 s−1 PPFD. Greenhouse mean relative humidity and air temperature were 44 % and 23 °C, respectively.

Comments are closed.