In this study, we assess the effects of TAU pretreatment

In this study, we assess the effects of TAU pretreatment click here on the behavior of zebrafish in the open tank after acute 1% EtOH (v/v) exposure (20 and 60 min of duration) and on brain alcohol contents. The exposure for 20 min exerted significant anxiolytic effects, which were prevented by 42,150, and 400 mg/L TAU. Conversely, the 60-min condition induced depressant/sedative effects, in which the changes on vertical activity were associated to modifications

on the exploratory profile. Although all TAU concentrations kept locomotor parameters at basal levels, 150 mg/L TAU, did not prevent the impairment on vertical activity of EtOH[60]. Despite the higher brain EtOH content detected in the 60-min exposure, 42, 150, and 400 mg/L TAU attenuated the increase of alcohol content in EtOH[60] group. In conclusion, our data suggest that both protocols of acute EtOH exposure induce significant changes in the spatio-temporal behavior of zebrafish

and that TAU may exert a preventive role by antagonizing the effects induced by EtOH possibly due to its neuromodulatory role and also by decreasing brain EtOH levels. The hormetic dose-response of TAU on vertical exploration suggests a complex interaction between TAU and EtOH in the central nervous system. (C) 2012 Elsevier Ltd. All rights reserved.”
“Recent studies have revealed that E3 ubiquitin ligases have essential functions in the establishment of neuronal circuits. Strikingly, a common emerging theme in these studies is that spatial organization of E3 ubiquitin ligases plays a critical role in the control of neuronal learn more morphology and connectivity. E3 ubiquitin ligases localize to the nucleus, centrosome, Golgi apparatus, axon and

dendrite cytoskeleton, and synapses in neurons. Localization of ubiquitin ligases within distinct subcellular compartments may facilitate neuronal responses to extrinsic cues and the ubiquitination of local substrates. Here, we review the functions of neuronal E3 ubiquitin ligases at distinct subcellular locales and explore how they regulate neuronal morphology Urease and function in the nervous system.”
“Background: Although C-reactive protein (CRP) is significantly increased in patients with diabetic nephropathy, whether CRP exerts direct proinflammatory effects on human renal tubular epithelial cells (HK-2 cells) is still unclear. Methods: HK-2 cells were incubated with purified CRP at clinically relevant concentrations (0, 5, 10, 20 and 40 mu g/ml). The protein and transcript levels of thrombospondin-1 (TSP-1) and interleukin-6 (IL-6) were determined by ELISA and RT-PCR. Phosphorylation of p38MAPK was investigated through Western blot analysis in HK-2 cells induced by CRP. The activation of nuclear factor-kappa B (NF-kappa B) was studied via EMSA. A specific p38MAPK inhibitor (SB203580) and an NF-kappa B inhibitor (PDTC; pyrrolidine dithiocarbamate) were used to analyze the signal transduction in CRP induction.

Comments are closed.