Conversely, a 3-deazaneplanocin A nmr high growth rate, the ability to grow in adherence as in compact lesions and the lack of pigmentary activity (as a consequence of the environment acidification due to the high levels of glycolytic activity -the Warburg effect-), are typical of those melanomas
adapted to grow in highly hypoxic condition of fast growing metastases. In this perspective the discussed results are consistent with the hypothesis of a more differentiated phenotype. Indeed following E5 expression and the restoration of a near neutral pH, in addition to the correct maturation of tyrosinase, a global re-organization of the endocellular trafficking occurs. Such a reorganization permits the adequate processing of the many pigmentary proteins through several different pathways and their correct cooperation into the multi-step process of pigment deposition. As a whole these data stand against the hypothesis that the E5 alkalinisation of cellular pH takes place through the subversion of endocellular trafficking, which is on the contrary restored, at least as far as melanogenesis is concerned. Conversely they support the view that the E5 protein, once expressed in an intact human cell, directly or indirectly modulates V-ATPase proton pump with
a wide range of orchestrated functional consequences. Finally restoration BYL719 concentration of the melanogenic phenotype is associated with a clear elevation of cell reducing activity, consistent with a partially re-differentiated phenotype. Once again this result is in line with the hypothesis of a close linkage between the global melanoma phenotype and the cell metabolism which impacts on growth abilities, pathways activation and pigment deposition [36, 37]. Being the anaplastic phenotype of melanomas associated with a less favourable clinical outcome and a more severe prognosis [40], we next wondered whether such a reversion could have an impact on response to chemotherapeutic agents. In this work we showed that following the inhibition of V-ATPase by HPV16-E5
the whole melanin synthesis pathway Glutathione peroxidase is restored in amelanotic melanoma lines and accordingly these cells appear more responsive to dopamine-mimetic pro-drugs, whose toxicity is related to their oxidation into toxic intermediates i.e. quinones, by tyrosinase-catalyzed reactions. In addition, tyrosinase reactivation is also linked with an increased sensitivity to drugs QNZ interacting with other related pathways, as shown by the case of BSO, a GSH depleting drug via the gamma-glutamyl-cysteine synthetase inhibition. Since GSH is a major defence against toxic quinone intermediates through the production of conjugates, GSH depletion results in a severe cell death selectively in those cells where active melanogenesis is present. In conclusion the expression of the HPV16-E5 oncogene proved able to (partially) revert the malignant phenotype of amelanotic melanomas to a less aggressive, drug responsive state.