Comparable kinetics were found for brain IL-6 production in the b

Comparable kinetics were found for brain IL-6 production in the brain. Brain IL-6 mRNA levels increased after systemic LPS challenge ( Fig. 3C, F(5,24) = 6.381, p = 0.0007) showing a significant increase at 2 h and then returned to baseline by 4 h. Brain TNF-α mRNA levels increased significantly after systemic LPS challenge ( Fig. 3B, F(5,24) = 5.144, p = 0.0026), peaking at 2 h, after which the cytokine mRNA levels declined sharply and returned to baseline levels by 6 h. No significant changes in brain IL-1β levels were observed ( Fig. 3D, F(5,19) = 0.2683),

although a trend toward increased levels was seen at 30 min. Circulating PGE2 metabolite levels increased significantly after systemic LPS challenge (Fig. 3E, F(1,27) = 14.25, p < 0.0001) starting at 30 min, and levels remained high for 2 h. At 6 h, PGE2 metabolite levels returned to baseline levels. We GSK-3 inhibition measured the hippocampal levels of COX-1 and COX-2 mRNA, the genes that encode the key enzymes responsible for the formation of prostanoids. All NSAIDs inhibited PGE2 levels in the hypothalamus ( Fig. 2) and since behavioural changes were inhibited by indomethacin and ibuprofen only, we assessed the hippocampus for COX and cytokine expression levels. COX-1, changed

modestly after systemic LPS challenge ( Fig. 3F, F(5,22) = 2.865, p = 0.0134), however, no statistically significant changes were found between t = 0 and any other time point after LPS. In contrast, the levels of COX-2 mRNA increased after systemic LPS challenge ( Fig. 3G, F(5,22) = 2.865, p = 0.0386). A small, non-significant increase was found

1 h after LPS injection and a second selleck significant increase was observed 6 h post LPS challenge. These data suggest that PGE2 levels in the serum precede IL-6 production and that cytokine levels in the brain peak at 2 h. To further investigate the biological mechanisms underlying the inhibitory effects of indomethacin and ibuprofen on LPS-induced behavioural changes, we used a series of selective inhibitors, including inhibitors of thromboxane, COX-1, COX-2 and a PPAR-γ agonist. Brain and serum samples were collected 3 h after LPS injection, immediately after the burrowing task when expression of most inflammatory else mediators is still increased. Fig. 4 shows the results of pre-treatment with the thromboxane synthase inhibitors, ozagrel, picotamide, furegrelate, and the thromboxane receptor antagonist BM 567 on LPS-induced changes in burrowing. The selective inhibitors only modestly affected the LPS-induced changes in burrowing, and none of these changes were significantly different from mice treated with LPS alone (all p > 0.05). These data suggest that increased production of thromboxane cannot explain the effects of LPS on behavioural changes. Pre-treatment of mice with the potent and selective PPAR-γ ligand ciglitazone had no effect on LPS-induced behavioural changes (p > 0.05).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>