(C) 2007 Elsevier
Inc. All rights reserved.”
“This work deals with the development and implementation of a new fatigue model for simulating fatigue effects in skeletal muscles. Basic idea of this modelling strategy is an approach that divides the fibres of a muscle into three groups: fibres in the active state, those that are already fatigued and fibres in the resting state. All fibres are able to switch between the different groups by defining adequate rates. In this way a continuous transfer of fibres between those three states has been described. Rooted on an incompressible, Blasticidin S order hyperelastic constitutive law with transversely isotropic characteristics
the fatigue model GDC-0068 purchase has been implemented in the framework of the finite element method. Numerical examples are given in order to illustrate the ability of this model. Further, we validate the model by fatigue experiments of the rat soleus muscle. In doing so, it proves that the model is able to predict physiological observations and mechanical test results. (C) 2010 Elsevier Ltd. All rights reserved.”
“The intimate connection between the brain and the heart was enunciated by Claude Bernard over 150 years ago. In our neurovisceral integration model we have tried to build on this pioneering work. In the present paper we further elaborate our model and update it with recent results. Specifically, we performed a meta-analysis of recent neuroimaging studies on the relationship between heart rate variability and regional cerebral blood flow. We identified a number of regions, including the amygdala and ventromedial prefrontal cortex, in which significant associations across studies were found. We further
propose that the default response to uncertainty is the threat response and may be related to the well known negativity bias. Heart rate variability may provide an index of how strongly ‘top-down’ appraisals, mediated by cortical-subcortical pathways, Lck shape brainstem activity and autonomic responses in the body. If the default response to uncertainty is the threat response, as we propose here, contextual information represented in ‘appraisal’ systems may be necessary to overcome this bias during daily life. Thus, HRV may serve as a proxy for ‘vertical integration’ of the brain mechanisms that guide flexible control over behavior with peripheral physiology, and as such provides an important window into understanding stress and health. (c) 2011 Elsevier Ltd. All rights reserved.