Authors’ contributions XWZ, LZ contributed equally to the experiments, data analysis and interpretation of data; WJG made contributions to the study design; WQ, XHY, XL, LZZ contributed to the experiments; JL made contributions to the study design; XWZ drafted the article and WJG revised it. All the authors have read and approved the final manuscript.”
“Introduction All-trans retinoic acid (ATRA) is one of the
strongest and most thoroughly studied differentiation inducers. It can induce the differentiation and apoptosis of a variety of tumor cells including glioma cells[1]. The concept of tumor stem cells suggests that the tumor stem cells are a cause of the formation, development and post-treatment relapse of tumors, as brain tumor stem cells (BTSCs) have a high potential of self-renewal GSK872 mouse and proliferation, which enables them to be resistant to chemo- and radiotherapies, so BTSCs must be eradicated in order to radically cure brain tumors. In this experiment, BTSCs are taken as the therapeutic target to study the effect of ATRA on the proliferation and differentiation of BTSCs, evaluating the antitumor activity of ATRA from a brand-new perspective. Materials see more and methods 1 Major reagents and
instruments (1) Major reagents: DMEM/F12 and B27 were purchased from Gibco(U.S.A). Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were purchased from PeproTech (U.S.A.). ATRA,3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT), fetal bovine serum (FBS), trypsin, Cy3-labeled sheep
anti-rabbit IgG and diamidino-phenyl-indole (DAPI) were all purchased from Sigma (U.S.A). Rabbit anti-human CD133 antibody was purchased from Abcam (U.S.A). Rabbit anti-glial fibrillary acidic protein (GFAP) antibody and FITC-labeled goat anti-rabbit IgG were purchased from Boster (Wuhan, China). (2) Major instruments: BB16 CO2 incubator and HF-safe-1200 purifying worktable (Heraeus and Lishen company, Germany). CKX41 inverted phase contrast microscope, BX51 fluorescence microscope and imaging CYC202 in vitro system (Olympus, Japan). ELISA Reader 2010 (Anthos, Austria). 2 Experimental methods (1) Isolation, Microtubule Associated inhibitor culture and purification of BTSCs: The tissue samples were obtained from 3 surgical patients in Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University who had been diagnosed with glioblastoma during February-May, 2009. Fresh glioblastoma tissues without cystic degeneration, necrosis, calcification and electric coagulation were resected from the margin of tumor. By method in Ref[2], fresh glioblastoma tissues without cystic degeneration, necrosis, calcification and electric coagulation were resected from the margin of tumor, put in simplified serum-free medium (DMEM/F12, containing 2% B27, 20 g/L EGF and 20 g/L bFGF), and trimmed off necrotic tissues and residual blood vessels.