Analysis of SIV Gag-specific responses of gamma interferon, tumor necrosis factor alpha, interleukin-2, macrophage inflammatory protein 1 beta, and CD107a revealed that the polyfunctionality of Gag-specific CD4(+) T cells, as defined by the multiplicity of these responses, was markedly elevated in the acute phase in NAb-immunized animals. In the chronic phase, despite the absence of detectable NAbs, virus control was maintained, accompanied by polyfunctional Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4(+) T-cell responses in this NAb-triggered virus
control, suggesting possible synergism between NAbs and T cells for control of HIV/SIV replication.”
“The nucleocapsid protein (N) of vesicular PF-573228 chemical structure stomatitis virus and other rhabdoviruses plays a central role in the assembly and template functions of the viral N-RNA complex. The crystal structure of the viral N-RNA complex suggests that the central region of the N protein interacts with the Quizartinib purchase viral RNA. Sequence alignment of rhabdovirus N proteins revealed several highly conserved regions, one of which spanned residues 282 to 291 (GLSSKSPYSS) in the central region of the molecule. Alanine-scanning mutagenesis of this region suggested that replacement of the tyrosine residue at position 289 (Y289) with alanine resulted in an N-RNA template that is nonfunctional
in viral genome replication and transcription. To establish the molecular basis of this defect, our further studies revealed that the Y289A mutant maintained its interaction
Milciclib datasheet with other N protein molecules but that its interactions with the P protein or with the viral RNA were defective. Replacement of Y289 with other aromatic, polar, or large amino acids indicated that the hydrophobic and aromatic nature of this position in the N protein is functionally important and that a larger aromatic residue is less favorable. Interestingly, we have observed that several single-amino-acid substitutions in this highly conserved region of the molecule rendered the nucleocapsid template nonfunctional in transcription without adversely affecting the replication functions. These results suggest that the structure of the N protein and the resulting N-RNA complex, in part, regulate the viral template functions in transcription and replication.”
“The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily.