2005; Zeebe et al 2008) Oceanic pH has already decreased 0 1 U

2005; Zeebe et al. 2008). Oceanic pH has already decreased 0.1 U ever since the industrial revolution in the eighteenth century, and it is speculated to decrease 0.5 U further by the end of the twenty-first century according to IPCC scenario. The pH of the surface ocean is estimated to decrease by 0.3–0.5 and 0.7–0.77 U relative to the present level by 2,100

(pH 7.6–7.9) and 2,300 (pH 7.33–7.5), respectively (Caldeira and Wickett 2003; Ross et al. 2011). Such rapid ocean acidification is believed to have negative influences on marine organism with calcifying organisms as prime targets AG-881 cost for strong Crenigacestat in vitro damage by acidification (Feely et al. 2004), e.g., the bleaching

and reduction of coral reefs (Gattuso et al. 1998; Kleypas et al. 1999; Hoegh-Guldberg et al. 2007; Anthony et al. 2008; Kuffner et al. 2008; Veron et al. 2009). In addition, the shell of gastropod, https://www.selleckchem.com/products/blasticidin-s-hcl.html Littorina littorea, and foraminifera are shown to lose hardness by acidification (Bibby et al. 2007; Bijma et al. 2002). The fertilization rate of sea urchin, Psammechinus miliaris, declined with acidification (Miles et al. 2007). Such influence of oceanic acidification is expected to affect the entire ecosystem and damage the oceanic environment. However, even under such circumstances, actual events caused by acidification have not been investigated thoroughly in individual organisms (Richier et al. 2010). In particular,

a marine calcifying haptophycean alga, Emiliania huxleyi, is affected by ocean acidification (Iglesias-Rodriguez et al. 2008; Langer et al. 2006; Riebesell et al. 2000) because E. huxleyi forms cell-covering, Glutamate dehydrogenase calcium carbonate crystals, called coccoliths. The alga is known to distribute widely in the world ocean, fix a large amount of carbon, produce a huge biomass and carry carbon from sea surface to the sediment by the biological CO2 pump (Liu et al. 2009). Therefore, E. huxleyi can be said to have played very important roles in the global carbon cycle. Riebesell et al. (2000) reported a reduction in calcification by E.

Comments are closed.