Furthermore, the sensitivity of the selected primer pairs was ass

Furthermore, the sensitivity of the selected primer pairs was assessed by amplifying T. magnatum DNA 10-fold serial dilutions (from 10 ng to 0.001 ng) in pooled genomic DNAs from the other fungal species used in this study. Conventional PCRs were performed on 25 μl reaction mixture volumes containing 100 ng of total DNA, 10 mM Tris–HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 200 μM for each dNTP, 400 nM for each primer and 1.5 U

of TaKaRaTM rTaq DNA polymerase (Takara, Otsu, Japan). PCR conditions were as follow: 25 cycles of 95°C for 20 s, 60°C for 30 s, 72°C for 40 s with an initial denaturation at 95°C BAY 11-7082 concentration for 6 min and a final extension at 72°C for 7 min. PCR products were electrophoresed in 1% agarose gels and visualized by staining with ethidium bromide in a GeneGenius Imaging System (SynGene, Cambridge, UK). Real-time PCR TaqMan PCR assays were carried out in 96-well optical plates (Bioplastic) using a Stratagene Mx3000P QPCR system (Stratagene, AZD8931 La Jolla, CA, USA). Each amplification was performed on 25-μl reaction

volumes containing 12.5 (1X) μl of Maxima Probe qPCR Master mix (SC79 ic50 Fermentas), 30 nM of ROX and 200 ng of total DNA. Primer and probe concentration were optimised to 0.5 μM and 0.2 μM respectively based on the lowest threshold cycle (Ct) values and the highest fluorescent signal. The TaqMan probe was labelled at the 5’end with the fluorescent reporter dye FAM (6-carboxy-fluorescin) while the 3′ end was modified with the quencher dye TAMRA (6-carboxy-tetramethylrhodamine) (MWG BIOTECH, Ebersberg, Germany). Two replicates per soil sample and no template controls were prepared for each plate and Real-time PCRs were repeated twice to confirm the results. The optimised thermal

cycle protocol included PDK4 a 10 min incubation at 95°C followed by 45 cycles of 95°C for 15 s, 60°C for 30 s and 72°C for 30 s. The threshold fluorescence level was determined with the default adaptive baseline algorithm of the MXPro software (version 4.10) (Agilent technologies) and the resulting Ct values were automatically converted to quantities of T. magnatum DNA using the standard curve method. A standard curve was generated for each run with a series of ten-fold dilutions of genomic DNA from T. magnatum (from 107 to 102 fg per reaction) as standards. To evaluate the real-time PCR detection limit further serial dilutions of 1 and 10 fg of T. magnatum DNA were tested in triplicate. All real-time PCR products were electrophoresed as described above to exclude amplification of non-target sequences. Data analysis ANOVA was applied to check for significant differences in the amount of DNA extracted and the T. magnatum DNA concentrations obtained from the different trufféres. When significant differences were encountered, mean values were compared using Bonferroni’s test. The non-parametric Kruskal-Wallis test was used to verify the results obtained with the ANOVA.

Comments are closed.